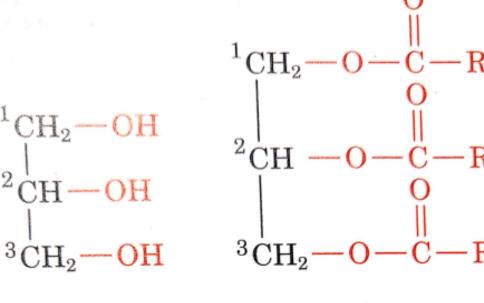
Lipids

Structure


Stearic acid Oleic acid Linoleic acid α -Linolenic acid FIGURE 12-1 Structural formulas of some C_{18} fatty acids. The double bonds all have the cis configuration.

YASAN 124 The Common Biological Fatty Acids

Symbol ^a	Common Name	Systematic Name	Structure	mp (°C)
Saturated f	atty acids			12
12:0	Lauric acid	Dodecanoic acid	CH ₃ (CH ₂) ₁₀ COOH	44.2
14:0	Myristic acid	Tetradecanoic acid	CH ₃ (CH ₂) ₁₂ COOH	52
16:0	Palmitic acid	Hexadecanoic acid	CH ₃ (CH ₂) ₁₄ COOH	63.1
18:0	Stearic acid	Octadecanoic acid	CH ₃ (CH ₂) ₁₆ COOH	69.6
20:0	Arachidic acid	Eicosanoic acid	CH ₃ (CH ₂) ₁₈ COOH	75.4
22:0	Behenic acid	Docosanoic acid	$CH_3(CH_2)_{20}COOH$	81
24:0	Lignoceric acid	Tetracosanoic acid	$CH_3(CH_2)_{22}COOH$	84.2
Unsaturate	ed fatty acids (all doubl	e bonds are cis)		
16:1n-7	Palmitoleic acid	9-Hexadecenoic acid	$CH_3(CH_2)_5CH = CH(CH_2)_7COOH$	-0.5
18:1n-9	Oleic acid	9-Octadecenoic acid	$CH_3(CH_2)_7CH = CH(CH_2)_7COOH$	13.4
18:2n-6	Linoleic acid	9,12-Octadecadienoic acid	$CH_3(CH_2)_4(CH = CHCH_2)_2(CH_2)_6COOH$	-9
18:3n-3	α-Linolenic acid	9,12,15-Octadecatrienoic acid	$CH_3CH_2(CH = CHCH_2)_3(CH_2)_6COOH$	-17
18:3n-6	γ-Linolenic acid	6,9,12-Octadecatrienoic acid	$CH_3(CH_2)_4(CH = CHCH_2)_3(CH_2)_3COOH$	
20:4n-4	Arachidonic acid	5,8,11,14-Eicosatetraenoic acid	$CH_3(CH_2)_4(CH = CHCH_2)_4(CH_2)_2COOH$	-49.5
20:5n-3	EPA	5,8,11,14,17-Eicosapentaenoic acid	$CH_3CH_2(CH = CHCH_2)_5(CH_2)_2COOH$	-54
22:6n-3	DHA	4,7,10,13,16,19-Docosahexenoic acid	$CH_3CH_2(CH = CHCH)_6CH_2COOH$	
24:1n-9	Nervonic acid	15-Tetracosenoic acid	$CH_3(CH_2)_7CH = CH(CH_2)_{13}COOH$	39

[&]quot;Number of carbon atoms: number of double bonds. For unsaturated fatty acids, n is the number of carbon atoms, n-x is the double-bonded carbon atom, and x is the number of that carbon atom counting from the methyl terminal (ω) end of the chain.

Source: Dawson, R.M.C., Elliott, D.C., Elliott, W.H., and Jones, K.M., Data for Biochemical Research (3rd ed.), Chapter 8, Clarendon Press (1986).

Triacylglycerol

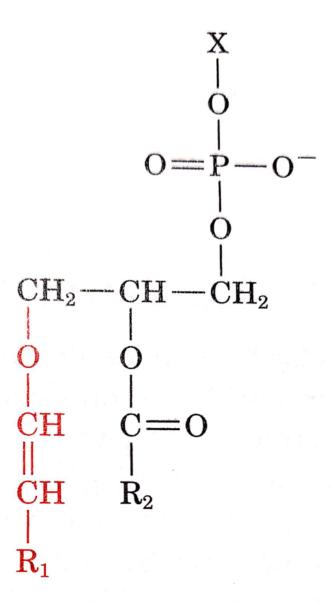
Glycerol

Scanned with CamScanner

 CH_2 CH_2 CH ||9 CH CH_2 CH_2 CHCH CH_2 CH_2 CH_2 CH_2 $CH_{\parallel 12}$ CH_2 CH_2 CH CH_2 CH_2 CH_2 CH_2 CH_2 CH_2 CH_2 CH_2 $_{16}CH_3$ CH_2 CH_2 CH_2 $_{18}\mathrm{CH}_3$ $_{18}\mathrm{CH}_3$

 $^{1}\text{CH}_{2}$ $-^{2}\text{CH}$ - $^{3}\text{CH}_{2}$

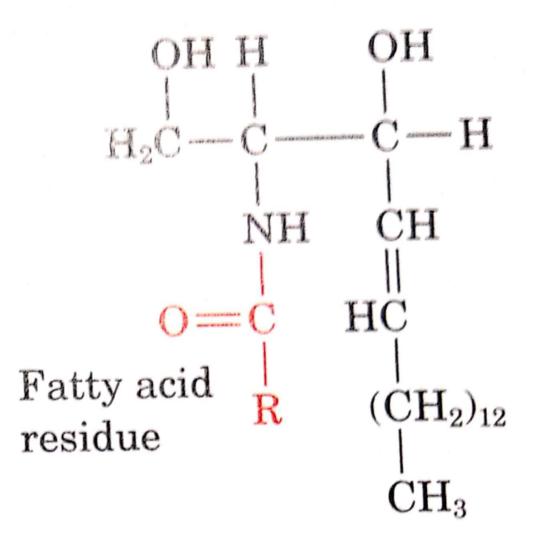
1-Palmitoleoyl-2-linoleoyl-3-stearoyl-glycerol


sn-Glycerol-3-phosphate

(b)
$$CH_2 - O - C - R_1$$
 $R_2 - C - O - C - H$
 $CH_2 - O - P - O - X$

Glycerophospholipid

TABLE 12-2 The Common Classes of Glycerophospholipids

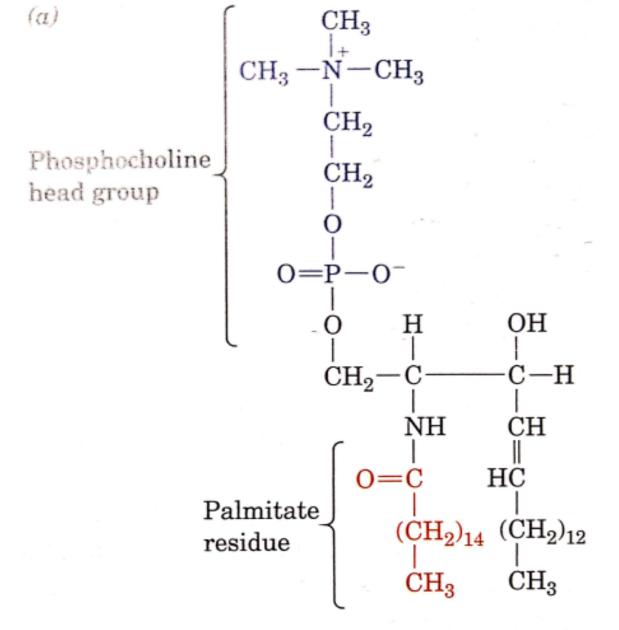

Name of X—OH	Formula of—X	Name of Phospholipid
Water Ethanolamine Choline Serine	—H —CH ₂ CH ₂ NH ₃ ⁺ —CH ₂ CH ₂ N(CH ₃) ₃ ⁺ —CH ₂ CH(NH ₃ ⁺)COO ⁻	Phosphatidic acid Phosphatidylethanolamine Phosphatidylcholine (lecithin) Phosphatidylserine
myo-Inositol	HO H HO OH H H H	Phosphatidylinositol
Glycerol	—CH₂CH(OH)CH₂OH	Phosphatidylglycerol
Phosphatidylglycerol	$-CH_{2}CH(OH)CH_{2}-O-P-O-CH_{2} O O O O O O O O O O O O O O O O O O O$	Diphosphatidylglycerol (cardiolipin)

A plasmalogen

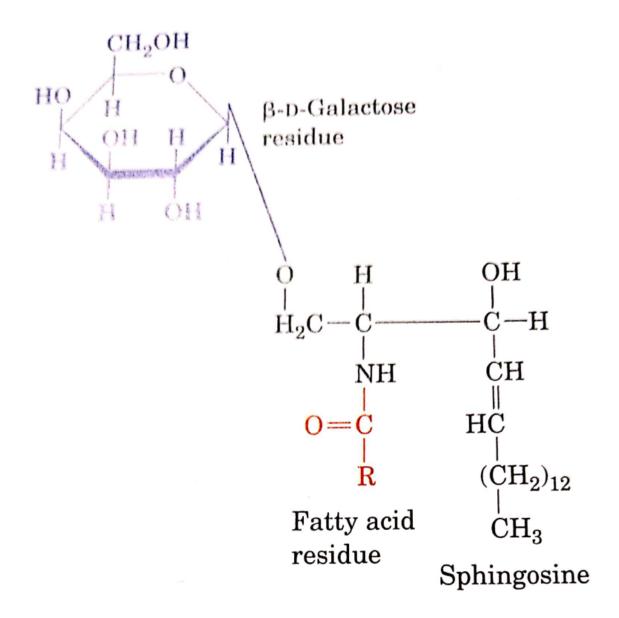
(a)
$$\begin{array}{c} \text{CH}_{3} \\ \text{H}_{3}\text{C} - \text{N}^{\frac{1}{2}} - \text{CH}_{3} \\ \text{CH}_{2} \\ \text{CH}_{2} \\ \text{O} \\ \text{O} \\ \text{O} - \text{P} = \text{O} \\ \text{O} \\ \text{O} \\ \text{O} \\ \text{O} \\ \text{CH}_{2} - \text{C} - \text{CH}_{2} \\ \text{O} \\ \text{O} \\ \text{C} = \text{O} \\ \text{C} = \text{O} \\ \text{C} + \text{C} \\ \text{C} - \text{H} \\ \text{CH}_{3} \\ \text{C} - \text{H} \\ \text{C} - \text{H} \\ \text{C} \\ \text{CH}_{2} \right)_{7} \\ \text{C} \\ \text{CH}_{3} \\ \text{C} \\ \text{C}$$


 ${\bf 1-Stear oyl-2-oleoyl-3-phosphatidyl choline}$

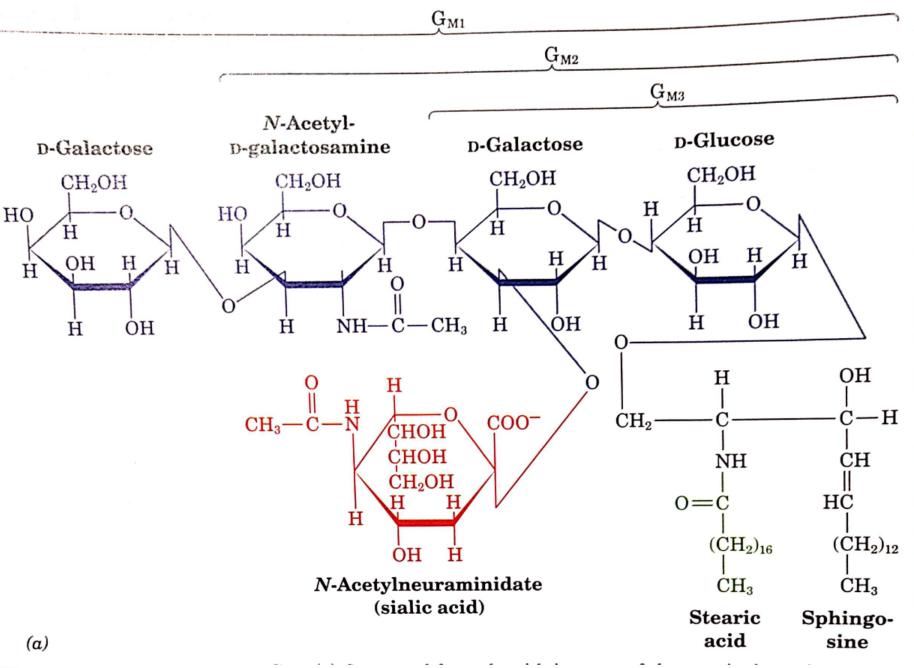
A ceramide


$$\begin{array}{c|cccc} \text{OH} & \text{H} & \text{OH} \\ & & | & | & | \\ & & | & | & | \\ & \text{H}_2\text{C} - \text{C} - \text{C} - \text{H} \\ & & | & | \\ & & \text{H}_3\text{N}^+ & \underset{\parallel}{\text{CH}} \\ & & \text{HC} \\ & & | & \\ & & \text{(CH}_2)_{12} \\ & & | & \\ & & \text{CH}_3 \\ \end{array}$$

Sphingosine



Dihydrosphingosine


FIGURE 12-5 Molecular formulas of sphingosine and dihydrosphingosine. The chiral centers at C2 and C3 of sphingosine and dihydrosphingosine have the configurations shown in Fischer projection. The double bond in sphingosine has the trans configuration.

A sphingomyelin

A galactocerebroside

